Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: covidwho-2316694

ABSTRACT

Hypoxia-inducible factor-1α (HIF-1α), a central player in maintaining gut-microbiota homeostasis, plays a pivotal role in inducing adaptive mechanisms to hypoxia and is negatively regulated by prolyl hydroxylase 2 (PHD2). HIF-1α is stabilized through PI3K/AKT signaling regardless of oxygen levels. Considering the crucial role of the HIF pathway in intestinal mucosal physiology and its relationships with gut microbiota, this study aimed to evaluate the ability of the lysate from the multi-strain probiotic formulation SLAB51 to affect the HIF pathway in a model of in vitro human intestinal epithelium (intestinal epithelial cells, IECs) and to protect from lipopolysaccharide (LPS) challenge. The exposure of IECs to SLAB51 lysate under normoxic conditions led to a dose-dependent increase in HIF-1α protein levels, which was associated with higher glycolytic metabolism and L-lactate production. Probiotic lysate significantly reduced PHD2 levels and HIF-1α hydroxylation, thus leading to HIF-1α stabilization. The ability of SLAB51 lysate to increase HIF-1α levels was also associated with the activation of the PI3K/AKT pathway and with the inhibition of NF-κB, nitric oxide synthase 2 (NOS2), and IL-1ß increase elicited by LPS treatment. Our results suggest that the probiotic treatment, by stabilizing HIF-1α, can protect from an LPS-induced inflammatory response through a mechanism involving PI3K/AKT signaling.


Subject(s)
Lipopolysaccharides , Proto-Oncogene Proteins c-akt , Humans , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases/metabolism , Hypoxia/metabolism , Epithelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
2.
EMBO J ; 42(10): e112234, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2284890

ABSTRACT

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Interferons/metabolism , Phospholipids , Phosphatidylinositol 3-Kinases/metabolism , RNA, Viral , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Virus Internalization , Membrane Proteins/metabolism
3.
Cells ; 11(22)2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2199805

ABSTRACT

Long Intergenic Non-Protein Coding RNA 665 (LINC00665) is an RNA gene located on the minus strand of chromosome 19. This lncRNA acts as a competing endogenous RNA for miR-4458, miR-379-5p, miR-551b-5p, miR-3619-5p, miR-424-5p, miR-9-5p, miR-214-3p, miR-126-5p, miR-149-3p, miR-379-5p, miR-665, miR-34a-5p, miR-186-5p, miR-138-5p, miR-181c-5p, miR-98, miR-195-5p, miR-224-5p, miR-3619, miR-708, miR-101, miR-1224-5p, miR-34a-5p, and miR-142-5p. Via influencing expression of these miRNAs, it can enhance expression of a number of oncogenes. Moreover, LINC00665 can influence activity of Wnt/ß-Catenin, TGF-ß, MAPK1, NF-κB, ERK, and PI3K/AKT signaling. Function of this lncRNA has been assessed through gain-of-function tests and/or loss-of-function studies. Furthermore, diverse research groups have evaluated its expression levels in tissue samples using microarray and RT-qPCR techniques. In this manuscript, we have summarized the results of these studies and categorized them in three sections, i.e., cell line studies, animal studies, and investigations in clinical samples.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Signal Transduction/genetics
4.
Cell Physiol Biochem ; 56(6): 707-729, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2206081

ABSTRACT

Natural resources have long played a prominent part in conventional treatments as a parental source due to their multifaceted functions and lesser side effects. The diversity of marine products is a significant source of possible bioactive chemical compounds with a wide range of potential medicinal applications. Marine organisms produce natural compounds and new drugs with unique properties are produced from these compounds. A lot of bioactive compounds with medicinal properties are extracted from marine invertebrates, including Peptides, Alkaloids, Terpenoids, Steroids. Thus, it can be concluded that marine ecosystems are endowed with natural resources that have a wide range of medicinal properties, and it is important to examine the therapeutic and pharmacological capabilities of these molecules. So, finding particular inhibitors of the COVID-19 in natural compounds will be extremely important. Natural ingredients, in this light, could be a valuable resource in the progression of COVID-19 therapeutic options. Controlling the immunological response in COVID-19 patients may be possible by addressing the PI3K/Akt pathway and regulating T cell responses. T cell effector activity can be improved by preventing anti-viral exhaustion by suppressing PI3K and Akt during the early anti-viral response. The diversity of marine life is a significant supply of potentially bioactive chemical compounds with a broad range of medicinal uses. In this study, some biologically active compounds from marine organisms capable of inhibiting PI3K/AKT and the possible therapeutic targets from these compounds in viral infection COVID-19 have been addressed.


Subject(s)
Biological Products , COVID-19 , Humans , Angiogenesis Inhibitors , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Biological Products/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , SARS-CoV-2/drug effects
5.
Life Sci ; 314: 121256, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2165678

ABSTRACT

Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-ß expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1ß, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-ß, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-ß and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.


Subject(s)
COVID-19 , MicroRNAs , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/genetics , Bleomycin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thymol/therapeutic use , Transforming Growth Factor beta/metabolism , COVID-19/pathology , Inflammation/metabolism , Lung/metabolism , Oxidative Stress , Fibrosis , MicroRNAs/metabolism
6.
Int J Mol Sci ; 23(22)2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2143227

ABSTRACT

An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1ß in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.


Subject(s)
Acute Lung Injury , NF-E2-Related Factor 2 , Humans , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Acute Lung Injury/chemically induced , GA-Binding Protein Transcription Factor
7.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2143226

ABSTRACT

Although pulmonary fibrosis (PF) is considered a rare disease, the incidence thereof has increased steadily in recent years, while a safe and effective cure remains beyond reach. In this study, the potential of tocotrienol-rich fractions (TRF) and carotene to alleviate PF was explored. PF was induced in Sprague-Dawley rats via a single intratracheal bleomycin (BLM) (5 mg/kg) instillation. These rats were subsequently treated with TRF, carotene, pirfenidone (Pir) and nintedanib (Nin) for 28 days via gavage administration, whereafter histopathological performance, biochemical functions and molecular alterations were studied in the lung tissues. Our results showed that TRF, carotene, Nin and Pir all ameliorated PF by reducing inflammation and resisting oxidative stress to varying degrees. The related mechanisms involved the TGF-ß1/Smad, PI3K/Akt and NF-κB signaling pathways. Ultimately, our findings revealed that, when combined with TRF, the therapeutic effects of Nin and Pir on PF were enhanced, indicating that TRF may, indeed, provide promising potential for use in combination therapy in the treatment of PF.


Subject(s)
Pulmonary Fibrosis , Tocotrienols , Rats , Animals , Pulmonary Fibrosis/metabolism , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Carotenoids/therapeutic use
8.
Front Immunol ; 13: 1020624, 2022.
Article in English | MEDLINE | ID: covidwho-2119501

ABSTRACT

Background: SARS-CoV-2 infects through the respiratory route and triggers inflammatory response by affecting multiple cell types including type II alveolar epithelial cells. SARS-CoV-2 triggers signals via its Spike (S) protein, which have been shown to participate in the pathogenesis of COVID19. Aim: Aim of the present study was to investigate the effect of SARS-CoV2 on type II alveolar epithelial cells, focusing on signals initiated by its S protein and their impact on the expression of inflammatory mediators. Results: For this purpose A549 alveolar type II epithelial cells were exposed to SARS CoV2 S recombinant protein and the expression of inflammatory mediators was measured. The results showed that SARS-CoV-2 S protein decreased the expression and secretion of IL8, IL6 and TNFα, 6 hours following stimulation, while it had no effect on IFNα, CXCL5 and PAI-1 expression. We further examined whether SARS-CoV-2 S protein, when combined with TLR2 signals, which are also triggered by SARS-CoV2 and its envelope protein, exerts a different effect in type II alveolar epithelial cells. Simultaneous treatment of A549 cells with SARS-CoV-2 S protein and the TLR2 ligand PAM3csk4 decreased secretion of IL8, IL6 and TNFα, while it significantly increased IFNα, CXCL5 and PAI-1 mRNA expression. To investigate the molecular pathway through which SARS-CoV-2 S protein exerted this immunomodulatory action in alveolar epithelial cells, we measured the induction of MAPK/ERK and PI3K/AKT pathways and found that SARS-CoV-2 S protein induced the activation of the serine threonine kinase AKT. Treatment with the Akt inhibitor MK-2206, abolished the inhibitory effect of SARS-CoV-2 S protein on IL8, IL6 and TNFα expression, suggesting that SARS-CoV-2 S protein mediated its action via AKT kinases. Conclusion: The findings of our study, showed that SARS-CoV-2 S protein suppressed inflammatory responses in alveolar epithelial type II cells at early stages of infection through activation of the PI3K/AKT pathway. Thus, our results suggest that at early stages SARS-CoV-2 S protein signals inhibit immune responses to the virus allowing it to propagate the infection while in combination with TLR2 signals enhances PAI-1 expression, potentially affecting the local coagulation cascade.


Subject(s)
Alveolar Epithelial Cells , COVID-19 , Humans , Alveolar Epithelial Cells/metabolism , SARS-CoV-2 , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt , Tumor Necrosis Factor-alpha , RNA, Viral , Plasminogen Activator Inhibitor 1 , Interleukin-6 , Interleukin-8 , Toll-Like Receptor 2
9.
Curr Top Microbiol Immunol ; 436: 437-466, 2022.
Article in English | MEDLINE | ID: covidwho-2075205

ABSTRACT

A number of different experimental models using both non-selective and selective PI3K inhibitors have shown that many pathogenic steps of respiratory disorders, such as bronchial asthma, Chronic Obstructive Pulmonary Disease (COPD), Idiopathic Pulmonary Fibrosis (IPF), Acute Respiratory Distress Syndrome (ARDS) and Lung Cancer (LC) are, at least in part, regulated by the PI3K signaling pathway, suggesting that the inhibition of PI3K could represent an ideal therapeutic target for the treatment of respiratory diseases. This chapter summarizes the current state of the therapeutic strategies aimed to exploit the inhibition of PI3K in this context. In animal models of asthma, selective δ and γ inhibitors have shown to be effective, and when administered by inhalation, reasonably safe. Nevertheless, very few clinical trials have been performed so far. The efficacy of current traditional therapies for allergic bronchial asthma has likely diminished the need for new alternative treatments. Surprisingly, in COPD, where instead there is an urgent need for new and more effective therapeutic approaches, the number of clinical studies is still low and not capable yet, with the exception for an acceptable safety profile, to show a significant improvement of clinical outcomes. In IPF, a disease with a disappointing prognosis, PI3K inhibitors have been bound to a FAP ligand with the aim to selectively target myofibroblasts, showing to significantly reduce collagen production and the development of lung fibrosis in an animal model of lung fibrosis. Due to its role in cell activation and cell replication, the PI3K pathway is obviously largely involved in lung cancer. Several studies, currently ongoing, are testing the effect of PI3K inhibitors mainly in NSCLC. Some evidence in the treatment of cancer patients suggests the possibility that PI3K inhibitors may enhance the response to conventional treatment. The involvement of PI3Kδ in the modulation of airway neutrophil recruitment and bronchial epithelial functional alterations also suggest a potential role in the treatment of ARDS, but at the current state the ongoing trials are aimed to the treatment of ARDS in COVID-19 patients. In general, few clinical trials investigating PI3K inhibitors in respiratory disorders have been performed so far. This relatively new approach of treatment is just at its beginning and certainly needs further efforts and additional studies.


Subject(s)
Asthma , COVID-19 , Idiopathic Pulmonary Fibrosis , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Respiratory Distress Syndrome , Animals , Asthma/drug therapy , Collagen/therapeutic use , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Ligands , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Respiratory Distress Syndrome/drug therapy
10.
Carbohydr Polym ; 297: 120032, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2068751

ABSTRACT

The cytokine storm is highly associated with inflammatory-type disease severity and patients' survival. Plant polysaccharides, the main natural phytomedicine source, have a great potential to be an effective drug to treat cytokine storm. Herein we found that a polymeric acemannan (ABPA1) isolated from Aloe Vera Barbadensis extract C (AVBEC) exerted prominent inhibitory effects on inflammation-induced cytokine storm. The results displayed that ABPA1 effectively suppressed LPS-induced proinflammatory cytokines release in vitro. Moreover, ABPA1 treatment alleviated the cytokine storm and tissue damage in LPS- and IAV-induced mouse pneumonia models, and altered the phenotypic balance of macrophages in lung tissues. Functionally, ABPA1 enhanced macrophage M2 polarization and phagocytosis in RAW264.7 cells and inhibited LPS-induced M1 polarization. Mechanistically, ABPA1 enhanced mitochondrial metabolism and OXPHOS through activated PI3K/Akt/GSK-3ß signalling pathway. Overall, our findings suggest that ABPA1 may modulate macrophage activation and mitochondrial metabolism by targeting PI3K/Akt/GSK-3ß signalling pathway, thereby alleviating cytokine storm and inflammation.


Subject(s)
Aloe , Aloe/metabolism , Animals , Cytokine Release Syndrome , Cytokines/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Mannans , Mice , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism
11.
Biomed Res Int ; 2022: 3510423, 2022.
Article in English | MEDLINE | ID: covidwho-2020494

ABSTRACT

Purpose: Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods: In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results: According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion: The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.


Subject(s)
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Dipeptides/pharmacology , Lipopolysaccharides/adverse effects , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology , Proto-Oncogene Proteins c-akt/metabolism
12.
Commun Biol ; 5(1): 808, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1991682

ABSTRACT

The ongoing COVID-19 pandemic has claimed more than 6 million lives and continues to test the world economy and healthcare systems. To combat this pandemic, the biological research community has shifted efforts to the development of medical countermeasures, including vaccines and therapeutics. However, to date, the only small molecules approved for the treatment of COVID-19 in the United States are the nucleoside analogue Remdesivir and the protease inhibitor Paxlovid, though multiple compounds have received Emergency Use Authorization and many more are currently being tested in human efficacy trials. One such compound, Apilimod, is being considered as a COVID-19 therapeutic in a Phase II efficacy trial. However, at the time of writing, there are no published efficacy data in human trials or animal COVID-19 models. Here we show that, while Apilimod and other PIKfyve inhibitors have potent antiviral activity in various cell lines against multiple human coronaviruses, these compounds worsen disease in a COVID-19 murine model when given prophylactically or therapeutically.


Subject(s)
COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Humans , Mice , Pandemics , Phosphatidylinositol 3-Kinases/metabolism , Protease Inhibitors
13.
Biomed Pharmacother ; 153: 113296, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1894813

ABSTRACT

Acteoside (AC), a phenylpropanoid glycoside isolated from many dicotyledonous plants, has been demonstrated various pharmacological activities, including anti-oxidation, anti-inflammation, anti-cancer, neuroprotection, cardiovascular protection, anti-diabetes, bone and cartilage protection, hepatoprotection, and anti-microorganism. However, AC has a poor bioavailability, which can be potentially improved by different strategies. The health-promoting characteristics of AC can be attributed to its mediation in many signaling pathways, such as MAPK, NF-κB, PI3K/AKT, TGFß/Smad, and AMPK/mTOR. Interestingly, docking simulation study indicates that AC can be an effective candidate to inhibit the activity of SARS-CoV2 main protease and protect against COVID-19. Many clinical trials for AC have been investigated, and it shows great potentials in drug development.


Subject(s)
COVID-19 Drug Treatment , Phosphatidylinositol 3-Kinases , Glucosides , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polyphenols , RNA, Viral , SARS-CoV-2
14.
Immunol Res ; 70(3): 269-275, 2022 06.
Article in English | MEDLINE | ID: covidwho-1889039

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A single-stranded RNA virus from a ß-Coronaviridae family causes acute clinical manifestations. Its high death rate and severe clinical symptoms have turned it into the most significant challenge worldwide. Up until now, several effective COVID-19 vaccines have been designed and marketed, but our data on specialized therapeutic drugs for the treatment of COVID-19 is still limited. In order to synthesis virus particles, SARS-CoV-2 uses host metabolic pathways such as phosphoinositide3-kinase (PI3K)/protein kinase B (PKB, also known as AKT)/mammalian target of rapamycin (mTOR). mTOR is involved in multiple biological processes. Over-activation of the mTOR pathway improves viral replication, which makes it a possible target in COVID-19 therapy. Clinical data shows the hyperactivation of the mTOR pathway in lung tissues during respiratory viral infections. However, the exact impact of mTOR pathway inhibitors on the COVID-19 severity and death rate is yet to be thoroughly investigated. There are several mTOR pathway inhibitors. Rapamycin is the most famous inhibitor of mTORC1 among all. Studies on other respiratory viruses suggest that the therapeutic inhibitors of the mTOR pathway, especially rapamycin, can be a potential approach to anti-SARS-CoV-2 therapy. Using therapeutic methods that inhibit harmful immune responses can open a new chapter in treating severe COVID-19 disease. We highlighted the potential contribution of PI3K/Akt/mTOR inhibitors in the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , COVID-19 Vaccines , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
15.
Curr Opin Cell Biol ; 76: 102086, 2022 06.
Article in English | MEDLINE | ID: covidwho-1850777

ABSTRACT

Phosphoinositide signaling lipids are crucial for eukaryotes and regulate many aspects of cell function. These signaling molecules are difficult to study because they are extremely low abundance. Here, we focus on two of the lowest abundance phosphoinositides, PI(3,5)P2 and PI(5)P, which play critical roles in cellular homeostasis, membrane trafficking and transcription. Their levels are tightly regulated by a protein complex that includes PIKfyve, Fig4 and Vac14. Importantly, mutations in this complex that decrease PI(3,5)P2 and PI(5)P are linked to human diseases, especially those of the nervous system. Paradoxically, PIKfyve inhibitors which decrease PI(3,5)P2 and PI(5)P, are currently being tested for some neurodegenerative diseases, as well as other diverse diseases including some cancers, and as a treatment for SARS-CoV2 infection. A more comprehensive picture of the pathways that are regulated by PIKfyve will be critical to understand the roles of PI(3,5)P2 and PI(5)P in normal human physiology and in disease.


Subject(s)
COVID-19 Drug Treatment , Phosphatidylinositol Phosphates , Flavoproteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols , Phosphoric Monoester Hydrolases , RNA, Viral , SARS-CoV-2
16.
Development ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: covidwho-1799075

ABSTRACT

Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.


Subject(s)
Endocrine Glands/metabolism , Insulin-Like Growth Factor II/genetics , Locus Control Region , Placenta/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Animals , Female , Genetic Loci , Genomic Imprinting , Glycoproteins/genetics , Glycoproteins/metabolism , Insulin-Like Growth Factor II/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism
17.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: covidwho-1785731

ABSTRACT

Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting the oral cavity. It is characterized by high morbidity and very few therapeutic options. Angiotensin (Ang)-(1-7) is a biologically active heptapeptide, generated predominantly from AngII (Ang-(1-8)) by the enzymatic activity of angiotensin-converting enzyme 2 (ACE 2). Previous studies have shown that Ang-(1-7) counterbalances AngII pro-tumorigenic actions in different pathophysiological settings, exhibiting antiproliferative and anti-angiogenic properties in cancer cells. However, the prevailing effects of Ang-(1-7) in the oral epithelium have not been established in vivo. Here, we used an inducible oral-specific mouse model, where the expression of a tamoxifen-inducible Cre recombinase (CreERtam), which is under the control of the cytokeratin 14 promoter (K14-CreERtam), induces the expression of the K-ras oncogenic variant KrasG12D (LSLK-rasG12D). These mice develop highly proliferative squamous papilloma in the oral cavity and hyperplasia exclusively in oral mucosa within one month after tamoxifen treatment. Ang-(1-7) treated mice showed a reduced papilloma development accompanied by a significant reduction in cell proliferation and a decrease in pS6 positivity, the most downstream target of the PI3K/Akt/mTOR signaling route in oral papilloma. These results suggest that Ang-(1-7) may be a novel therapeutic target for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Papilloma , Papillomavirus Infections , Angiotensin I/pharmacology , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Mice , Mice, Transgenic , Mouth Neoplasms/drug therapy , Papilloma/drug therapy , Papilloma/pathology , Papilloma/prevention & control , Papillomavirus Infections/drug therapy , Peptide Fragments , Phosphatidylinositol 3-Kinases/metabolism , Tamoxifen/therapeutic use
18.
Nutrients ; 14(5)2022 Mar 05.
Article in English | MEDLINE | ID: covidwho-1732145

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a chronic, progressive, and, ultimately, terminal interstitial disease caused by a variety of factors, ranging from genetics, bacterial, and viral infections, to drugs and other influences. Varying degrees of PF and its rapid progress have been widely reported in post-COVID-19 patients and there is consequently an urgent need to develop an appropriate, cost-effective approach for the prevention and management of PF. AIM: The potential "therapeutic" effect of the tocotrienol-rich fraction (TRF) and carotene against bleomycin (BLM)-induced lung fibrosis was investigated in rats via the modulation of TGF-ß/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. DESIGN/METHODS: Lung fibrosis was induced in Sprague-Dawley rats by a single intratracheal BLM (5 mg/kg) injection. These rats were subsequently treated with TRF (50, 100, and 200 mg/kg body wt/day), carotene (10 mg/kg body wt/day), or a combination of TRF (200 mg/kg body wt/day) and carotene (10 mg/kg body wt/day) for 28 days by gavage administration. A group of normal rats was provided with saline as a substitute for BLM as the control. Lung function and biochemical, histopathological, and molecular alterations were studied in the lung tissues. RESULTS: Both the TRF and carotene treatments were found to significantly restore the BLM-induced alterations in anti-inflammatory and antioxidant functions. The treatments appeared to show pneumoprotective effects through the upregulation of antioxidant status, downregulation of MMP-7 and inflammatory cytokine expressions, and reduction in collagen accumulation (hydroxyproline). We demonstrated that TRF and carotene ameliorate BLM-induced lung injuries through the inhibition of apoptosis, the induction of TGF-ß1/Smad, PI3K/Akt/mTOR, and NF-κB signaling pathways. Furthermore, the increased expression levels were shown to be significantly and dose-dependently downregulated by TRF (50, 100, and 200 mg/kg body wt/day) treatment in high probability. The histopathological findings further confirmed that the TRF and carotene treatments had significantly attenuated the BLM-induced lung injury in rats. CONCLUSION: The results of this study clearly indicate the ability of TRF and carotene to restore the antioxidant system and to inhibit proinflammatory cytokines. These findings, thus, revealed the potential of TRF and carotene as preventive candidates for the treatment of PF in the future.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Tocotrienols , Animals , Bleomycin/toxicity , Carotenoids/adverse effects , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Rats , Rats, Sprague-Dawley , SARS-CoV-2 , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Tocotrienols/adverse effects , Transforming Growth Factor beta/metabolism
19.
Drug Discov Today ; 27(3): 848-856, 2022 03.
Article in English | MEDLINE | ID: covidwho-1729681

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a serious threat to global health. The disregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) cell signaling pathway observed in patients with COVID-19 has attracted attention for the possible use of specific inhibitors of this pathway for the treatment of the disease. Here, we review emerging data on the involvement of the PI3K/Akt/mTOR pathway in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the clinical studies investigating its tailored inhibition in COVID-19. Current in silico, in vitro, and in vivo data convergently support a role for the PI3K/Akt/mTOR pathway in COVID-19 and suggest the use of specific inhibitors of this pathway that, by a combined mechanism entailing downregulation of excessive inflammatory reactions, cell protection, and antiviral effects, could ameliorate the course of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , COVID-19/metabolism , Humans
20.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1715568

ABSTRACT

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Subject(s)
Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Interaction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL